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About the course

• Lectures = seminars
• During the course we will discuss:
- Measurements and uncertainties,
- Classical probability
- Probability distribution (discreet and continuous)
• Two tests - to pass the course, it is advisable to get 50% of
the total number of points from both tests
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Lecture 1.

Uncertainty in measurements

Introduction to probability and 
statistics
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MEASUREMENT

The result of a measurement is only an approximation or
estimate of the value of the specific quantity subject to
measurement, the measurand which can be classified as:

 simple, or
 complex

Example: Mathematical pendulum, l – the length, T – period are
simple measurands; measured directly

Determination of gravitational acceleration : g-complex measurand

g

l
2T 

Introduction to probability and statistics. lecture 1 4



MEASUREMENT

Let us assume:
1) l = 2 m, T = 2,84 s
2) l =2 m, T = 0,227 s
3) l = 2 m, T = 113,5 s

l
T

g 2

24

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Significant digits

Please write following numbers with the given accuracy:
- To the first two significant digits:
134.232 =
0.34242 =
0.0002425 =
- To the first three significant digits:
1 231.2032 =
5 223 113.3 =
2.000121 =
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Uncertainty

Practically, we do not know real values and estimate
uncertainties, due to dispersion of results, from the
laws of statistics.

Uncertainty is
• a parameter related to the result of

measurements,
• characterized by dispersion
• assigned to the measurand in a justified way.
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Measures of uncertainty

systematic random (statistic)
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- related to the measuring
instrument /device
- most commonly associated
with the scale interval of the
instrument

- is associated with random
scattering of data

Uncertainty



Measures of uncertainty

maximum, Δx

x0

x

x0-u(x) x0+u(x)

x0-Δx x0+Δx
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standard, u(x)

Uncertainty



In the simplest cases, the systematic 
uncertainty is the maximum uncertainty, 
and the random uncertainty is the standard 
uncertainty
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Measures of uncertainty



Standard uncertainty

Distribution of random variable xi, with a 
dispersion around the average x is characterized 
by standard deviation defined as:

But …

 
n

xx 2
i

n
lim

 



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Standard uncertainty

…

Exact values of standard deviation are unknown [we 
cannot take an infinite number of measurements].

Standard uncertainty represents an estimate of 
standard deviation.

Standard uncertainty could be expressed as: 

 
)n(n

xx
)x(u i

AV 1

2




 
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Example: 
We have performed a series 
of measurements getting the 
following results x1,x2, ….xn.
In such a sample that can be 
considered as big some of 
the results are the same; nk
is a number of random 
experiments, in which the 
same result xk has occurred.

xk nk

5.12 1

5.17 1

5.22 2

5.24 4

5.27 7

5.33 10

5.36 14

5.46 16

5.52 13

5.61 8

5.64 6

5.68 4

5.73 3

5.79 1

Sum 90
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Analysis of data

Arithmetic average

x=
n

x
x

n

i
i

 1
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Standard uncertainty

(standard deviation of the average)

 
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x=135.6     

Dx=0.01

If the maximum uncertainty is given:
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When we determine the standard uncertainty:

x=135.2543232     

u(x)=0.00142456

x=135.2543232     

u(x)=0.0015

x=135.2543     

u(x)=0.0015

0.01)(135.60x 

Notation



Analysis of data

x=
n

x
x

n

i
i

 1
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 
)n(n

xx
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u(x) = 0.050083 = 0.050 ;    x = 5.449556 = 5.450 

x = 5.450
u(x) =  0.050

[alternatively x = 
(5.450 ± 0.050) ]



Gauss distribution function

Probability density function for the result x or its error Dx
according to Gauss

x0 is the most probable result and can be represented by 
the arithmetic average,  is standard deviation, 2 is 
variance






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Normal distribution

2σ

95.4 % 
99.7 %

x

Φ
(x

)

Within the interval x0- < x < x0+ we find 68.2 % (2/3),  
For x0-2 < x < x0+2 - 95.4 %
For x0-3 < x < x0+3 - 99.7 % 

of all results

68.2% 
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Maximum uncertainty vs. 
standard uncertainty

Maximum uncertainty - within this interval:
x0 - Δx < xi < x0 + Δx

(almost) all the results xi, will fall.
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Standard uncertainty - within this interval:
x0 – u(x) < xi < x0 + u(x)

about 68% the results xi, will fall.



Maximum uncertainty vs. 
standard uncertainty

If we want to transform the standard uncertainty u(x) 
into the maximum uncertainty D(x):

Introduction to probability and statistics. lecture 1 20

(95% results are in [x0 – 2u(x) ; x0 + 2u(x)] )

)x(ux D 2

u(x) = 0.050083 = 0.050 ;    x = 5.449556 = 5.450 

x = 5.450
u(x) =  0.050

2u(x) = 0.10016 = 0.10
x = (5.45±0.10) 

or



Example: 
We have performed a series of 
measurements getting the following 
results x1,x2, ….xn. In such a sample 
that can be considered as big some 
of the results are the same; nk is a 
number of random experiments, in 
which the same result xk has 
occurred.

xk nk

5.2 1

5.3 1

5.4 2

5.5 4

5.6 7

5.7 10

5.8 14

5.9 16

6 13

6.1 12

6.2 6

6.3 4

6.4 3

6.5 1

Sum 94
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Total 
uncertainty



5.8978721 



n

x
x

n

i
i
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Standard deviation

(of the average):

 
100263280
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Total uncertainty

Total

If the maximum uncertainty is given, it is possible to 
determine the standard uncertainty:
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)x(u)x(u)x(u systematicrandomtot
22 
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i
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 
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Total uncertainty

0.0640.063517

3

10
0263280 22



 )
.

(.)x(utot

0.130.1270340.0635172 Dx

Answer:
0.064  u(x)   5.898, x  0.13) (5.90 x or
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1. Take several measurements.
2. If the results are identical, take the scale of 
the instrument as the uncertainty - it is the
systematic and the maximal uncertainty.

x = x ± Dx

Resume



Introduction to probability and statistics. lecture 1 26

3. If the results are different, take at least 5 
measurements. Find the estimator of the 
standard deviation of the mean (average) for 
these results.

 
)n(n

xxi
AV 1

2




 

Resume



Introduction to probability and statistics. lecture 1 27

.4. If the standard deviation is greater than the 
systematic uncertainty (instrument scale), 
assume that it is the random uncertainty of the 
measured quantity (neglect the effect of the 
instrument scale). You can also determine the 
maximum uncertainty (95% of the results).

 
)x(

)n(n

xx
systematic

i
AV D




 
1

2



xx 
AV)x(u 

)x(ux 2D

xxx D

Resume
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5. If the calculated standard deviation is less 
than the systematic uncertainty (instrument 
scale interval), calculate the total standard 
uncertainty. To calculate the standard total 
uncertainty, you should change the instrument 
scale interval (maximum systematic uncertainty) 
to the standard systematic uncertainty.

)x(u)x(u)x(u systematicrandomtot
22 

 
)n(n

xx
)x(u i

AVrandom 1

2




  3

x
)x(usystemaric

D


Resume
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6. You can extend the total systematic 
uncertainty to the total maximum uncertainty.

xx 
22

3
)

x
()x(u AV
D

 
xxx D

)x(ux 2D

Resume



Absolute uncertainty is expressed in the same units as 

a measurand

Symbols: u(x) or Dx

Relative uncertainty ur(x) or Dxr the ratio of absolute 

uncertainty to the measured value:

x

xu
xur

)(
)( 

Relative uncertainty has no units and can be expressed in %
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Absolute and relative uncertainty

x
x

xr

D
D



Uncertainty of complex measurand 
– propagation of errors
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Law of propagation of uncertainties

Standard uncertainty of complex measurand
y=f(x1,x2,...xn) can be calculated from the law
of propagation of uncertainties as a geometric
sum of partial differentials.
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Example

In a certain experiment one determines gravitational 
acceleration g on Earth by measuring the period T and 
length L of  a mathematical pendulum. Directly 
measured length is reported as (1.1325±0.0001) m. 
The period is T= 2.12 s, u(T) = 0.21 s

Calculate the relative uncertainty of g.
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Least Square Method - Linear 
Regression
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V [cm3] 1.0 2.0 3.0 4.0 5.0 6.0 7.0

m [g] 8.1 15.7 26.1 30.3 43.2 48 55.3

Please calculate the density for each measurement point, 
then determine the mean value and standard deviation of the 
mean



Least Square Method - Linear 
Regression
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V [cm3] 1.0 2.0 3.0 4.0 5.0 6.0 7.0

m [g] 8.1 15.7 26.1 30.3 43.2 48 55.3



Least Square Method - Linear 
Regression
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V [cm3] 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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Least Square Method - Linear 
Regression
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Least Square Method - Linear 
Regression

   min
2

2  
n

i
ii baxyS
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Least Square Method - Linear 
Regression
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Least Square Method - Linear 
Regression
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Least Square Method - Linear 
Regression
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Least Square Method - Linear 
Regression



Least Square Method - Linear 
Regression
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